If it's not what You are looking for type in the equation solver your own equation and let us solve it.
15x^2-80x+80=0
a = 15; b = -80; c = +80;
Δ = b2-4ac
Δ = -802-4·15·80
Δ = 1600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1600}=40$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-80)-40}{2*15}=\frac{40}{30} =1+1/3 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-80)+40}{2*15}=\frac{120}{30} =4 $
| 15x^2-80x+40=0 | | 53-1x=44 | | 180=12x+1+7x+8 | | 11x+8+8x+1=360 | | x+x-3+2x-6=39 | | 15x^2-80x+76=0 | | 3x/(.3)=3500 | | 5/6(x+0.5)=15 | | 7x+13=7x+13=180 | | (6y-4)+(5y-3)=360 | | 5.2q+4.6-7.1q=-0.9q-4.6 | | k+4.2=5.9k+4.2=5.9 | | a+3=4a+2 | | 180=77+x | | X+(5x-9)+4x=180 | | 15x+10=20x | | 2(1w+7)+6(3w+-1)=0 | | 15x+10=2x | | 15(x+3)=60 | | 1/2c-25=-32 | | 5(2x+10)=50 | | (11x+8)+(8x+1)=360 | | 2(10+10x)=60 | | 0.3a=10 | | -x-(13+4x=-3(5-9x)+2 | | (y-5)=4y-10 | | -2p-3=-2p | | 4x+1+37=90 | | n^2-5/3n+26/36=205/36 | | 4x+1+37=180 | | 30x+600=(X) | | 2•(3x-1)=3•(4x+2) |